Quantitative genetics of geometric shape in the mouse mandible.

نویسندگان

  • C P Klingenberg
  • L J Leamy
چکیده

We combine the methods of geometric morphometrics and multivariate quantitative genetics to study the patterns of phenotypic and genetic variation of mandible shape in random-bred mice. The data are the positions of 11 landmarks on the mandibles of 1,241 mice from a parent-offspring breeding design. We use Procrustes superimposition to extract shape variation and restricted maximum likelihood to estimate the additive genetic and environmental components of variance and covariance. Matrix permutation tests showed that the genetic and phenotypic as well as the genetic and environmental covariance matrices were similar, but not identical. Likewise, principal component analyses revealed correspondence in the patterns of phenotypic and genetic variation. Patterns revealed in these analyses also showed similarities to features previously found in the effects of quantitative trait loci and in the phenotypes generated in gene knockout experiments. We used the multivariate version of the breeders' equation to explore the potential for short-term response to selection on shape. In general, the correlated response is substantial and regularly exceeds the direct response: Selection applied locally to one landmark usually produces a response in other parts of the mandible as well. Moreover, even selection for shifts of the same landmark in different directions can yield dramatically different responses. These results demonstrate the role of the geometry and anatomical structure of the mandible, which are key determinants of the patterns of the genetic and phenotypic covariance matrices, in molding the potential for adaptive evolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic architecture of mandible shape in mice: effects of quantitative trait loci analyzed by geometric morphometrics.

This study introduces a new multivariate approach for analyzing the effects of quantitative trait loci (QTL) on shape and demonstrates this method for the mouse mandible. We quantified size and shape with the methods of geometric morphometrics, based on Procrustes superimposition of five morphological landmarks recorded on each mandible. Interval mapping for F(2) mice originating from an interc...

متن کامل

Integration and modularity of quantitative trait locus effects on geometric shape in the mouse mandible.

The mouse mandible has long served as a model system for complex morphological structures. Here we use new methodology based on geometric morphometrics to test the hypothesis that the mandible consists of two main modules, the alveolar region and the ascending ramus, and that this modularity is reflected in the effects of quantitative trait loci (QTL). The shape of each mandible was analyzed by...

متن کامل

Exploration of the Genetic Organization of Morphological Modularity on the Mouse Mandible Using a Set of Interspecific Recombinant Congenic Strains Between C57BL/6 and Mice of the Mus spretus Species

Morphological integration and modularity within semi-autonomous modules are essential mechanisms for the evolution of morphological traits. However, the genetic makeup responsible for the control of variational modularity is still relatively unknown. In our study, we tested the hypothesis that the genetic variation for mandible shape clustered into two morphogenetic components: the alveolar gro...

متن کامل

Does 3D Phenotyping Yield Substantial Insights in the Genetics of the Mouse Mandible Shape?

We describe the application of high-resolution 3D microcomputed tomography, together with 3D landmarks and geometric morphometrics, to validate and further improve previous quantitative genetic studies that reported QTL responsible for variation in the mandible shape of laboratory mice using a new backcross between C57BL/6J and A/J inbred strains. Despite the increasing availability of 3D imagi...

متن کامل

Pii: S0378-1119(01)00867-8

Developmental mechanisms are usually assumed to evolve by natural selection of the morphological traits they produce. Therefore, information on phenotypic traits is an important component of comparative studies of development. Morphometrics permits the rigorous quantitative analysis of variation in organismal size and shape, and is increasingly being used in developmental contexts. The new meth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Evolution; international journal of organic evolution

دوره 55 11  شماره 

صفحات  -

تاریخ انتشار 2001